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Abstract

Model checking is an automated technique that can be
used to determine whether a system satisfies certain re-
quired properties. To address the “state explosion” prob-
lem associated with this technique, we propose to integrate
assume-guarantee verification at different phases of system
development. During design, developers build abstract be-
havioral models of the system components and use them to
establish key properties of the system. To increase the scala-
bility of model checking at this level, we have previously de-
veloped techniques that automatically decompose the veri-
fication task by generating component assumptions for the
properties to hold. The design artifacts are subsequently
used to guide the implementation of the system, but also to
enable more efficient reasoning of the source code. In par-
ticular, we propose to use assumptions generated for the de-
sign to similarly decompose the verification of the actual
system implementation. We demonstrate our approach on
a significant NASA application, where design models were
used to identify and correct a safety property violation, and
the generated assumptions allowed us to check successfully
that the property was preserved by the implementation.

1. Introduction

Our work is motivated by an ongoing project at NASA
Ames Research Center on the application of automated ver-
ification techniques to autonomous software. Autonomous
systems involve complex concurrent behaviors for reacting
to unpredicted environmental stimuli without human inter-
vention. Extensive verification is a pre-requisite for the de-
ployment of missions that involve autonomy.
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Given some formal description for a system and a prop-
erty, model checking automatically determines whether the
property is satisfied by the system. The limitation of the ap-
proach, commonly known as the “state-explosion” problem,
is the exponential relation of the number of states in the sys-
tem under analysis to the number of components of which
the state is made [28]. Model checking therefore does not
scale, in general, to systems of realistic size.

The aim of our work is to increase the applicability and
scalability of model checking by:

1. applying it at different phases of software develop-
ment, and

2. using compositional (i.e. divide and conquer) verifi-
cation techniques that decompose the verification of a
software system into manageable subparts.

We believe that the verification of a safety critical system
should be addressed as early as during its design, and should
go hand in hand with later phases of software development.
Our experience working closely with the developers of the
control software for an experimental Mars Rover has been
that several integration issues can be detected during system
design. At that level, verification of the system is typically
more manageable and errors are easier and cheaper to fix
since the system has not yet been implemented. Although
system verification at the design level is undoubtedly impor-
tant, there is little guarantee that the implemented system in-
deed satisfies the properties established at design time. We
therefore need to provide a means of establishing that sys-
tem implementations preserve the properties that have been
demonstrated at the design level.

In previous work, we developed novel techniques for
performing automated assume-guarantee verification at the
design level [9, 17]. Assume-guarantee reasoning was orig-
inally aimed at enabling the stepwise development of con-
current processes, but has more recently been used to de-
compose the verification of large and complex systems. It is
in the latter context that we use it in our work.

Assume-guarantee reasoning first checks whether a com-
ponentM guarantees a propertyP , when it is part of a



system that satisfies an assumptionA. Intuitively, A char-
acterizes all contexts in which the component is expected
to operate correctly. To complete the proof, it must also be
shown that the remaining components in the system (M ’s
environment), satisfyA. In contrast with previous assume-
guarantee frameworks [8, 19, 25, 30], our techniques do not
require human input in defining assumptions, but rather
generate assumptionsautomatically, thereby increasing the
accessibility of this kind of reasoning.

The focus of the present work is to develop a methodol-
ogy for using design artifacts to leverage the verification of
the actual system implementation. To this aim, we propose
to use the assumptions that are automatically generated dur-
ing design-level verification to perform assume-guarantee
reasoning at the implementation level. In general, we be-
lieve that design-level assumptions can be used both dur-
ing component development as an adjunct to traditional unit
testing approaches, and during program validation, to en-
able more efficient reasoning and to model non-software
components, including the actual environment of a reactive
system. For the latter, it may be the case that critical sys-
tem properties can only be demonstrated under specific en-
vironmental assumptions that appear reasonable to the de-
veloper, but cannot be discharged because the environment
is unknown (e.g., autonomous systems). These assumptions
can then be used to monitor, during deployment, the behav-
ior of the environment, and trigger recovery actions when
this behavior violates the assumption.

The work presented in this paper contributes:
1. a methodology for using the results of the modular

analysis at the design level to improve the performance
of verification tools at the code level;

2. a program instrumentation technique for supporting
assume-guarantee reasoning of Java programs using
the Java PathFinder (JPF) model checker developed at
NASA Ames [32]; and

3. a significant case study demonstrating the applicability
of our approach to a real NASA software system.

The case study has been performed in the context of an on-
going collaboration with the developers of the control soft-
ware for an experimental Mars Rover. More specifically, we
have used our techniques to verify several versions of the
software both during its design, and during its implemen-
tation, often using the results of our work to influence the
design decisions of the developers. In this paper we will
present how design-level models were used to identify and
correct a safety property violation, and how design-level as-
sumptions allowed us to check successfully that the prop-
erty was preserved by the system implementation.

The remainder of the paper is organized as follows. We
first provide some background on our design-level verifi-
cation techniques in Section 2, followed by a description
of the methodology that we propose in Section 3. Section

4 presents our approach to model checking source code in
an assume-guarantee style. Section 5 describes the experi-
ence and results obtained by the application of our method-
ology to a NASA system. Finally, Section 6 presents related
work and Section 7 concludes the paper.

2. Background: Assume-guarantee verifica-
tion at the design level

In this section we give background on assume-guarantee
reasoning and we describe the automated assume-guarantee
frameworks that we have developed for reasoning about
software systems at the design level.

2.1. Assume-guarantee reasoning

In the assume-guarantee paradigm a formula is a triple
〈A〉M 〈P 〉, whereM is a component,P is a property, and
A is an assumption aboutM ’s environment. The formula is
true if wheneverM is part of a system satisfyingA, then
the system must also guaranteeP .

Consider for simplicity a system that is made up of com-
ponentsM1 andM2. To check that the system satisfies a
propertyP without composingM1 with M2, one can ap-
ply assume-guarantee reasoning as follows. The simplest
assume-guarantee proof rule shows that if〈A〉M1 〈P 〉 and
〈true〉M2 〈A〉 hold, then〈true〉M1 ‖ M2 〈P 〉 also holds.
This proof strategy can also be expressed as the following
inference rule (A-G rule):

(Premise 1) 〈A〉M1 〈P 〉
(Premise 2) 〈true〉M2 〈A〉

〈true〉M1 ‖ M2 〈P 〉
Note that for the use of this rule to be justified, the as-

sumption must be more abstract thanM2, but still reflect
M2’s behavior. Additionally, an appropriate assumption for
the rule needs to be strong enough forM1 to satisfyP .

2.2. Automated assume-guarantee frameworks

Several frameworks have been proposed [8, 19, 25, 30] to
support assume-guarantee reasoning. However, their practi-
cal impact has been limited because they require non-trivial
human input in defining assumptions. In previous work [9,
17] we developed novel frameworks to perform assume-
guarantee reasoning in afully automaticfashion. The work
was done in the context of finite Labeled Transition Sys-
tems (LTSs), i.e. communicating finite-state machines that
describe component behavioral interfaces, and safety prop-
erties expressed in terms of finite-state automata.

In [17], we present an approach to synthesizing the as-
sumption that a component needs to make about its envi-
ronment for a given property to hold. The assumption pro-
duced is theweakest, that is, it restricts the environment no
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guarantee reasoning

more and no less than is necessary for the component to sat-
isfy the property. Intuitively, the weakest assumption can be
related to the notion of a weakest precondition as given by
Dijkstra [12]. The automatic generation of weakest assump-
tions has direct application to the assume-guarantee proof;
it removes the burden of specifying assumptions manually
thus automating this type of reasoning.

The algorithm presented in [17] does not compute par-
tial results, meaning no assumption is obtained if the com-
putation runs out of memory, which may happen if the state-
space of the component is too large. We address this prob-
lem in [9], where we present a novel framework for per-
forming assume-guarantee reasoning using the A-G rule in
an incremental and fully automatic fashion. This framework
is illustrated in Figure 1.

At each iteration, a learning algorithm is used to build
approximate assumptionsAi, based onquerying the sys-
tem and on the results of the previous iteration. The
two premises of the compositional rule are then checked.
Premise 1 is checked to determine whetherM1 guarantees
P in environments that satisfyAi. If the result is false, then
the assumption is not restrictive enough, and it is modi-
fied based on the obtained counterexample. If Premise 1
holds, Premise 2 is checked to dischargeAi on M2. If
Premise 2 holds, then the A-G rule guarantees thatP holds
in M1 ‖ M2. If it doesn’t hold, further analysis is required
to identify whetherP is indeed violated inM1 ‖ M2 or
whetherAi is over-restrictive, in which case it needs to
be modified. The new assumption may still not be precise
enough, so the entire process must be repeated. This pro-
cess is guaranteed to terminate, stating thatM1 ‖ M2 sat-
isfies or violatesP (in which case it generates a counterex-
ample). Moreover, whenP is satisfied, our framework out-
puts the assumption used in the A-G rule.

Recently, we have extended our frameworks to handle
circular rules and more than two components. We have im-
plemented the frameworks in the LTSA model-checking
tool [26] and have applied them to the verification of sev-
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Figure 2. Verification at design and code level

eral design models of NASA software systems.

3. Methodology

This section describes our methodology for using the ar-
tifacts of the design-level analysis in order to decompose
the verification of the implementation of a software system.

To address the scalability issues associated with software
model checking, our approach, illustrated in Figure 2, inte-
grates assume-guarantee reasoning of concurrent systems
at the design and at the implementation level. At the de-
sign level, the architecture of a system is described in terms
of components and their behavioral interfaces modeled as
LTSs. Design models are intended to capture the design in-
tentions of system developers, and allow early verification
of key integration properties.

For example, consider a system that consists of two de-
sign modelsM1 andM2, and a global safety propertyP
(describing the sequence of events that the system is al-
lowed to produce, or equivalently the bad behaviors that the
system must avoid). To check in a more scalable way that
the compositionM1 ‖ M2 satisfiesP , we use the assume-
guarantee frameworks described in the previous section. We
expect that, with the feedback obtained by our verification
tools, the developers of the system will correct their mod-
els until the property is achieved at the design level. At that
stage, our frameworks will have automatically generated an
assumptionA that is strong enough forM1 to satisfyP but
weak enough to be discharged byM2 (i.e. 〈A〉M1 〈P 〉 and
〈true〉M2 〈A〉 both hold).

To then establish that the property is preserved by the
actual implementation, our approach uses the automati-
cally generated assumptionA, to perform assume-guarantee
reasoning at the source code level. The implementation
is decomposed as specified by the architecture at the de-
sign level (i.e. componentsC1 andC2 implementingM1

andM2, respectively; see Figure 2), and we establish that
〈true〉 C1 ‖ C2 〈P 〉 holds by checking that〈A〉 C1 〈P 〉 and
〈true〉 C2 〈A〉. If the two premises are true then the correct-
ness of the assume-guarantee rule guarantees that the prop-



erty is preserved by the implementation. If any one of the
two premises does not hold, then the counterexample(s) ob-
tained expose some incompatibility between the models and
the implementations, and are used to guide the developers
in correcting the implementation, the model, or both.

As mentioned in Section 2.1, the use of the A-G rule is
justified if assumptionA is more abstract than the compo-
nent that it represents (M2, at the design level). In our ex-
perience, for well designed systems, the interfaces between
components are small, and as a result|A| ¿ |M2|. For such
systems, our approach will therefore be more efficient than
checking directly that each implemented component refines
its corresponding design model.

The use of assumptions and properties expressed at the
design-level in checking the system implementation re-
quires a clear association between features of the design and
the implementation. Specifically, the application of our ap-
proach requires that each design-level component be asso-
ciated with a (primitive or composite) component in the im-
plementation, and that each event that appears in assump-
tions or properties be associated with some atomic event in
the implementation.

The software architecture of a system may not always
provide the best decomposition for verification [7]. How-
ever, for many systems that we have studied, the archi-
tectural decomposition lends itself well to our automated
assume-guarantee framework. One of the main motiva-
tions for our current line of research is the NASA Jet
Propulsion Laboratory’s Mission Data Systems architecture
(MDS) [13]. MDS is being developed for future NASA
missions and allows adaptations to be constructed by con-
figuring instantiations of components with an architecture
description language. We are interested in enriching criti-
cal components of MDS with models describing their ab-
stract behavioral interfaces, and relating the analysis of
these models with analysis of the resulting implementation.

4. Assume-guarantee analysis of software

In this section, we describe the main challenges in ex-
tending the Java Pathfinder software model checker to per-
form assume-guarantee reasoning, with assumptions and
properties expressed as finite-state automata. Although we
make our presentation in the context of Java programs,
our approach extends to other programming languages and
model checkers.

4.1. Java PathFinder

For checking Java implementations, we use Java
PathFinder (JPF) [32]. JPF is an explicit-state model
checker that analyzes Java bytecode classes directly for
deadlocks and assertion violations. JPF is built around
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a special-purpose Java Virtual Machine (JVM) that al-
lows Java programs to be analyzed. JPF supports depth-
first, breadth-first as well as heuristic search strategies to
guide the model checker’s search in cases where the state-
explosion problem is too severe [18].

In addition to the standard language features of
Java, JPF uses a special classVerify that al-
lows users to annotate their programs so as to
1) express non-deterministic choice with methods
Verify.random(n) and Verify.randomBool() ,
2) truncate the search of the state-space with method
Verify.ignoreIf(condition) when the
condition becomes true, and 3) indicate the start and end
of a block of code that the model checker should treat as one
atomic statement and not interleave its execution with any
other threads with methodsVerify.beginAtomic()
andVerify.endAtomic() .

4.2. Mapping and instrumentation

We instrument Java programs to perform assume-
guarantee reasoning using Java PathFinder. In our frame-
work, both assumptions and properties are expressed as de-
terministic finite-state machines. For example, consider a
program that opens and closes files. The assumption illus-
trated in Figure 3 expresses the fact that the environment
will always open a file before closing it, and will always
perform these actions in alternation. Any different behav-
ior with respect to these actions leads the assumption to the
ignore state, which reflects the fact that such behavior
will never be exercised in the context of the environment
that the assumption represents. On the other hand, the prop-
erty illustrated in Figure 4 expresses the fact that the sys-
tem isrequired to always open a file before closing it, and



public static void event() {
1) Verify.beginAtomic()
2) String threadName = Thread.currentThread().getName();
3) Throwable throwable = new Throwable();
4) StackTraceElement st = (throwable.getStackTrace())[1];
5) String methodName = st.getMethodName();
6) String className = st.getClassName();
7) int eventID = getEvent(className, methodName, threadName);
8) AG Assumption.event(eventID);
9) AG Property.event(eventID);
10) Verify.endAtomic();

}
Figure 5. Method event of class AGMonitor

to always perform these actions in alternation. Any behav-
ior that does not conform to this pattern is violating, and
will be trapped in theerror state.

At the source code level, assumptions and properties
are used to examine the behavior of the system and check
whether behaviors that are not ignored by the assumption
may be trapped by the property, meaning that the prop-
erty is violated under the specific assumption. The analyst
must provide a mapping between actions that appear in the
design-level assumptions and properties, and events that oc-
cur in the software. For simplicity, we assume that actions
in our design models correspond in the software either to
method calls or to the locking and unlocking of objects.

The software must then be instrumented so as to trap
the occurrence of events that appear in the mapping, and to
subsequently change the state of the assumption and prop-
erty appropriately. Presently, this instrumentation is done
by hand, but we are considering the use of automated tools
such as the instrumentation package in JPax [20]. We have
to date experimented with the use of iContract [23], but un-
fortunately encountered bugs in the software which could
not be fixed because the tool is no longer being supported.

At each point where an event occurs, a call to the method
AGMonitor.event() must be made. This method
traps the event and calls methods of the assumption and the
property. This method, shown in Figure 5, uses Java reflec-
tion to determine the name of the thread making the method
call (line 2), the method being called (lines 3-5), and the
class that contains the method (line 6). These three pieces
of information are used as a key to look up the correspond-
ing event from the design level model (line 7). Then, this
event is passed on to the assumption (line 8) and to the prop-
erty (line 9). The entire block is enclosed by JPF directives
(lines 1 and 10) which instruct it to treat the method body
as an atomic step and to interleave no other threads with the
execution of this method.

If more information is needed to determine the mapping
between the Java program and the events from the design-
level model, then theevent method can be extended to

public class AG Assumption {
1) private static int state = 0;
2) private static int[][] trans;

...
public static void event(int e) {

3) state = trans[state][e];
4) Verify.ignoreIf(state < 0);

} }
Figure 6. Class AGAssumption (excerpt)

allow parameters to be passed that contain this extra infor-
mation. This was necessary in our case study to obtain in-
formation about parameters being passed into method calls,
parameters being returned from method calls, and to trap
locks and unlocks of objects.

Assumptions and properties are implemented by classes
AGAssumption andAGProperty . An excerpt of the
AGAssumption class is shown in Figure 6. This class
has a static integer field that records the current state of the
assumption automaton (line 1) and a transition table that
stores the transitions (line 2). Theignore state of the as-
sumption is represented by a state with an ID less than zero.
The methodevent advances the assumption by looking
up the next state in the transition table (line 3). If the state
is less than 0, this represents that the current execution has
caused the assumption to enter itsignore state and that
JPF should not continue exploring this path (line 4). Since
we are only interested in property violations that occur un-
der the given assumption, the current path does not need to
be further explored.

TheAGProperty class is similar, except a state with
an ID less than zero represents theerror state and line 4
is replaced byassert(state >= 0) . This instructs
JPF to detect a property violation and produce a counter-
example trace if theerror state of the property is reached.



4.3. Environment modeling

The process-algebra based models that are supported by
our design-level tools can be checked in a straightforward
way both in isolation and in combination with other mod-
els. In contrast to these, software model checkers such as
JPF analyze executable programs, and as such, expect com-
plete programs as input. Therefore, to analyze system com-
ponents in isolation in an assume-guarantee style, one must
provide for each component an appropriate abstract envi-
ronment that will enable its analysis. In essence, such envi-
ronments provide stubs for the methods called by the com-
ponent that are implemented by other components, or drive
the execution of a component by calling methods that the
component provides to its environment.

For our experiments, we builtuniversal environments,
that may invoke any provided operation in a component’s
interface in any order. Note that during model checking, as-
sumptions restrict universal environments so that only the
sequences of operations that conform with the assumptions
are explored. Alternatively, assumptions can be encoded di-
rectly in the environments. In our case study we experi-
mented with both approaches (see Section 5.3). Although
we currently build environments by hand, we plan to build
on tools such as [31] to automate this process.

5. Case study

Our case study is the executive subsystem of the plan-
etary rover controller K9 developed at NASA Ames Re-
search Center. It has been performed in the context of an on-
going collaboration with the developers of the Rover, where
verification and development go hand-in-hand to increase
the quality of the design and implementation of the system.

In this section we describe how we used our assume-
guarantee frameworks to check a key property on the de-
sign models of the executive and to automatically gener-
ate an appropriate assumption. We show how this assump-
tion was used to perform assume-guarantee model check-
ing of source code with JPF and how this compares to the
monolithic (i.e. non-compositional) analysis of the execu-
tive’s Java implementation.

5.1. System description

The executive receives flexible plans from a planner,
which it executes according to the plan language seman-
tics. A plan is a hierarchical structure of actions that the
Rover must perform. Traditionally, plans are deterministic
sequences of actions. However, increased Rover autonomy
requires added flexibility. The plan language therefore al-
lows for branching based on state or temporal conditions

(state of system)

savedWakeUpStruct

conditionSetChanged

Internal

DbMonitor

Executive
ActionExecution

ExecTimerChecker

ExecCondChecker

Rover

subsystem analyzed

Planner

Database

Figure 7. The Executive of the K9 Mars Rover

that need to be checked, and also for flexibility with respect
to the starting time of an action.

The executive needs to monitor the state of the Rover
and of the environment to take appropriate paths in a flexi-
ble plan that it executes. It has been implemented as a multi-
threaded system (see Figure 7), made up of a main coordi-
nating component namedExecutive, components for moni-
toring the state conditionsExecCondChecker, and temporal
conditionsExecTimerChecker- each further decomposed
into two threads - and finally anActionExecutionthread
that is responsible for issuing the commands to the Rover.
The executive has been implemented as 25K lines of C++
code, 10K of which is the main control code, and the rest
defines data structures that are needed for the communica-
tion with the actual Rover. The software makes use of the
POSIX thread library, and synchronization between threads
is performed through mutexes and condition variables.

5.2. Design-level analysis

The developers provided their design documents that
described the synchronization between components in an
ad-hoc flowchart-style notation. These were in essence ex-
tended control-flow graphs of the threads, and focused on
such things as method calls, (un-)locking mutexes and wait-
for and signaling of condition variables. They looked very
much like LTSs, which allowed us to translate them in
a straightforward and systematic, albeit manual, way into
about 700 lines of FSP code. FSP is the input language of
the LTSA tool, in which we have implemented our assume-
guarantee frameworks described in Section 2. To achieve
a close correspondence between the FSP code and the de-
sign diagrams, we first built models for mutexes, condition
variables, and their associated methods. These models pro-
vided an infrastructure on top of which the actual threads of
the system were modeled.

Model checking of the design models uncovered a num-
ber of synchronization problems such as deadlocks and data
races. Moreover, the models were used for quick experi-
mentation with alternative solutions to existing defects. The



study that we present here focuses on the following prop-
erty that was formulated by the developer1.

Property: For the variablesavedWakeUpStructof the Ex-
ecCondCheckerthat is shared with theExecutive(see Fig-
ure 7), the property states that: “if theExecutivethread reads
the value of the variable, then theExecCondCheckershould
not read this value until theExecutiveclears it first”. The
property was represented in terms of two states correspond-
ing to the shared variable being cleared or not cleared, and
anerror state as discussed in Section 4.2.

Analysis: The developer expected the property to be sat-
isfied by theExecCondCheckerand theExecutiveirrespec-
tive of the behavior of other threads. Our analysis was there-
fore performed on these threads together with the mutexes
they use, since mutexes are the way in which synchroniza-
tion issues are resolved in the system. We applied assume-
guarantee reasoning as supported by our techniques de-
scribed in Section 2, where assumptions were generated for
theExecCondChecker(moduleM1) and discharged by the
Executive(moduleM2).

The weakest assumption has 6 states and expresses the
fact that “whenever theExecutivereads thesavedWakeUp-
Struct variable after acquiring mutexexec, it should hold
on to the mutex until it clears the variable”. This assump-
tion could not be discharged on theExecutive. The counter-
example obtained describes the following scenario: if the
ExecutivereadssavedWakeUpStructand decides that the
variable points to an irrelevant condition, it performs await
on a condition variable associated with theexeclock. The
wait causes theexeclock to be released automatically. The
problem was fixed by adding to theExecutivea statement
that clearssavedWakeUpStructbefore checking whether the
condition contained there is relevant.

Note that the violation of the above property does not al-
ways result in incorrect plan execution, which makes the
problem very difficult to detect with traditional testing. In
fact, the developers had been uncertain about this property
being satisfied, but could not generate a plan that would un-
cover the problem.

5.3. Implementation analysis

Set-up: We analyzed a Java translation of this code, which
was used in a case-study described in [5]. The translation
was done selectively and it focused on the core functional-
ity of the executive, about 10K lines of C++ code. The trans-
lated Java version is approximately 7.2K lines of code and
it contains all the components of Figure 7, where each com-
ponent (except theDatabase) executes as a separate thread.

1 More details about the design-level analysis of the K9 executive can
be found in [9].

In our experiment, we concentrated on a subsystem con-
sisting of theExecutiveandExecCondCheckerthreads (all
the other threads were not started), and we analyzed this
system for a very simple input plan, that consists of one
node and no time conditions (which are not relevant for the
analysis of the subsystem). JPF was able explore exhaus-
tively the state-space of this subsystem (any other config-
uration, i.e. starting more threads or more complex input
plans would force JPF to run out of memory). This sub-
system is small enough to be manageable by JPF, and thus
to provide a baseline for comparison with modular verifi-
cation, but it still contains enough details about the inter-
actions between theExecutiveand theExecCondChecker
threads, which were the focus of the design-level analysis.

To evaluate the merits of assume-guarantee verifica-
tion using the automatically generated design-level assump-
tion, we broke up the system in two componentsC1 and
C2 representing the ExecCondChecker and the Executive
threads respectively, and we checked the two premises of
the assume-guarantee rule.

Environment modeling: As was mentioned in Section 4, to
check componentsC1 andC2 in isolation, we need to iden-
tify the interface between them so we can generate environ-
ment models to make them closed.

To check Premise 1, we built a universal environment
to drive C1 (the ExecCondChecker), that invokes any se-
quence of operations in the classExecCondChecker ’s
interface (see Figure 8).

This driver loops forever generating events (line 1). It be-
gins by making a non-deterministic choice of whether or
not to acquire the lock on theExecutiveobject (line 2).
If it acquires the lock (line 3), we then use a specialized
form the ofAGMonitor.event method to trap the lock
event (line 4). The universal environment then makes a non-
deterministic choice (line 5). Depending on the results of
this choice, zero or more events are generated while the lock
is held (lines 6-10). These events include method calls that
accesssavedWakeUpStructwhich is shared between the two
threads (i.e.condChecker.deleteSavedWakeup()
and condChecker.getSavedWakeup() ) and meth-
ods that add and remove conditions to and from a list struc-
ture inExecCondChecker . Once the universal environ-
ment is done generating events, it generates an event signal-
ing that the lock is to be released (line 11) and then leaves
the synchronized block. If the choice was made to not ac-
quire the lock on line 2, then the universal environment gen-
erates a single event (lines 12-16).

To maintain a finite number of elements in the
list of conditions, we added an annotation forc-
ing JPF to backtrack if more than one call to
condChecker.addConditionCheck() is made;
this is a reasonable assumption, since we considered a con-



class Executive { ...
public void run() { ...

1) while(true) {
2) if(Verify.randomBool()) {
3) synchronized(exec) {
4) AG Monitor.event("Executive", "lock");
5) while(Verify.randomBool()) {
6) switch(Verify.random(4)) {
7) case 0: condChecker.deleteSavedWakeup(); break;
8) case 1: condChecker.getSavedWakeup(); break;
9) case 2: condChecker.addConditionCheck(id,...); break;
10) case 3: condChecker.removeConditionCheck(id,...); break;

} }
11) AG Monitor.event("Executive", "unlock"); }

} else {
12) switch(Verify.random(4)) {
13) case 0: condChecker.deleteSavedWakeup(); break;
14) case 1: condChecker.getSavedWakeup(); break;
15) case 2: condChecker.addConditionCheck(id,...); break;
16) case 3: condChecker.removeConditionCheck(id,...); break;

} } } } }
Figure 8. Universal environment

figuration where the input plan has only one node (and only
one condition could be added for it).

To check Premise 2, we built stubs that implement
the methods invoked in componentC1 by C2. Some care
needed to be taken when doing this. For example, the
getSavedWakeup() method can either return null or
an object. To simulate this, the method stub would non-
deterministically choose which to return.

Analysis: We used JPF and the property (P ) and assump-
tion (A) that were used in the design level analysis to check
the property monolithically (i.e., on the whole subsystem)
and modularly (i.e. we checked Premise 1:〈A〉 C1 〈P 〉 and
Premise 2:〈true〉 C2 〈A〉). In both cases, we discovered
the same error that was discovered at the design level. After
we corrected the error, we repeated the checks. While the
property was shown to hold on the whole sub-system, we
were surprised to find out that Premise 1 would not hold,
i.e. assumptionA was not strong enough to make the prop-
erty hold. After looking back at the design model, we no-
ticed that the system for which we had generated the as-
sumption also encoded a different assumption, according to
which all accesses tosavedWakeupStructby theExecutive
thread would be protected by theexeclock. This assump-
tion was encoded explicitly at the indications of the devel-
oper who gave us the initial models (the assumption was
subsequently discharged onM2). Using this new assump-
tion,A′, we checked that the property holds (i.e. we checked
that〈A∧A′〉C1 〈P 〉 holds and we discharged both assump-

tions onC2).

Results and discussion:Our experiments were run on a In-
tel Xeon 2.2 Ghz machine with 4Gb of memory (although a
single process could only access 2Gb of memory). This sys-
tem is running RedHat Linux version 8.0 with Sun’s Java
version 1.4.2-01. We used JPF version 2.4 using the -no-
verify-print, -no-deadlocks, and -verbose flags.

Table 1 gives the results of the experiment. The System
column describes the system being analyzed. The States and
Transitions columns report the number of states and transi-
tions explored by JPF. The Memory and Time report the
amount of memory needed and the time taken to perform
the analysis.

The Whole System rows give the results for checking
the property monolithically. The version marked bug cor-
responds to the original system in which the property does
not hold while the other version has had the bug fixed so
that the property does hold.

The Premise 1 lines report the results of verifying
Premise 1. As was mentioned previously, while performing
the verification, we discovered that an additional assump-
tion,A′ was needed to complete the verification. We looked
at two ways of incorporating this assumption into the anal-
ysis. The first uses the universal environment shown in Fig-
ure 8 and uses an automaton representation ofA′, as shown
in theAGAssumption class in Figure 6. The second uses
a modified universal environment that directly encodesA′.
This is done by replacing lines 12-16 of the universal en-
vironment with code that makes a choice only between the
two events on lines 15 and 16. The bug that caused a vio-



System States Transitions Memory (Mb) Time

Whole System 183,132 425,641 952.85 12m, 24s
Whole System (bug) 255 338 23.07 10s
Premise 1,A′ as automaton 60,830 134,177 315.98 6m, 55s
Premise 1,A′ encoded 53,215 117,756 255.96 4m, 49s
Premise 2, AssumptionA 13,884 20,601 118.97 1m, 16s
Premise 2, AssumptionA (bug) 145 144 44.49 20s
Premise 2, AssumptionA′ 13,884 20,601 109.58 1m, 7s
Premise 2, AssumptionA′ (bug) 13,884 20,601 121.37 49s

Table 1. Experimental results

lation of the property in the monolithic analysis was in the
Executive, not theExecConditionChecker, so these analy-
ses were not affected by the presence or absence of the bug.

The Premise 2 lines report the results for checking
Premise 2, in which the assumptions used in checking
Premise 1 need to be discharged. We discharged the as-
sumptionsA andA′ separately, on the system containing
the bug and on the system in which the bug is fixed.

From Table 1, we can see that the compositional ap-
proach to verification does reduce the number of states that
JPF needs to explore and the amount of memory necessary
for the analysis in the version of the Rover that does not con-
tain the bug. The results from checking Premise 1 show that
the encoding of the assumption affects the performance of
the model checker. We plan to investigate this further.

This case study demonstrates that the use of design level
assumptions has merits in improving the performance of
source code model checking. Our experimental work is of
course preliminary, and we are planning to carry out larger
case studies to validate our approach.

6. Related work

It is well known that software defects are less costly the
earlier they are removed in the development process. To-
wards this end, a number of researchers have worked on
applying model checking to artifacts that appear through-
out the software life-cycle, such as requirements [3, 21], ar-
chitectures and designs [1, 27, 29] and source code [4, 6, 10,
14, 32]. Our work integrates the analysis performed at dif-
ferent levels, using assume-guarantee reasoning.

Assume-guarantee reasoning is based on the observa-
tion that large systems are being built from components and
that this composition can be leveraged to improve the per-
formance of analysis techniques. Automated techniques for
support of component-based reasoning are gaining promi-
nence, see for example [2, 11, 15].

Recently, Henzinger et al. [22] have presented a frame-
work for thread-modular abstraction refinement, in which
assumptions and guarantees are both refined in an iterative

fashion. The framework applies to programs that commu-
nicate through shared variables, and, unlike our approach
where assumptions are controllers of the component that is
being analyzed, the assumptions in [22] are abstractions
of the environment components. The work of Flanagan and
Qadeer also focuses on a shared-memory communication
model [16], but does not address notions of abstractions as
is done in [22]. Jeffords and Heitmeyer use an invariant gen-
eration tool to generate invariants for components that can
be used to complete an assume-guarantee proof [24]. While
their proof rules are sound and complete, their invariant
generation algorithm is not guaranteed to produce invari-
ants that will complete an assume-guarantee proof even if
such invariants exist.

7. Conclusions

We presented an approach for integrating assume-
guarantee verification at different phases of system devel-
opment, to address the scalability issues associated with
the verification of complex software systems. Our approach
uses the results of modular analysis at the design level to
improve the performance of verification at the code level.
We gave a program instrumentation technique for support-
ing assume-guarantee reasoning of Java programs using the
Java PathFinder model checker; our approach easily extends
to other programming languages and model checkers. We
also presented a significant case study demonstrating the
applicability of our approach to a realistic NASA software
system. To evaluate how useful our approach is in practice,
we are planning its extensive application to other real sys-
tems. However, our early experiments provide strong evi-
dence in favor of this line of research.

In the future, we plan to look at ways to better auto-
mate the process of code annotation and environment gen-
eration. Additionally, we plan to investigate lighter-weight
techniques such as stateless model checking or run-time
verification, in the context of our methodology. Finally, we
plan to evaluate the use of other design-level artifacts to im-
prove the performance of verification at source-code level.
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